
Apart from the release of secretory vesicles by special­
ized cells, which carry, for example, hormones or neuro­
transmitters, all cells are capable of secreting various 
types of membrane vesicles, known as extracellular 
 vesicles, and this process is conserved throughout evo­
lution from bacteria to humans and plants1–3. The secre­
tion of extracellular vesicles was initially described as a 
means of eliminating unneeded compounds from the 
cell4. However, we now know that extracellular vesicles 
are more than just waste carriers, and the main interest 
in the field is now focused on their capacity to exchange 
components between cells — varying from nucleic acids 
to lipids and proteins — and to act as signalling vehicles 
in normal cell homeostatic processes or as a  consequence 
of pathological developments5–7.

Even though the generic term extracellular vesicles is 
currently in use to refer to all these secreted membrane 
vesicles, they are in fact highly heterogeneous (FIG. 1), 
which has largely hampered their characterization and 
manipulation of their properties and functions. Insights 
into the biogenesis of secreted vesicles were provided by 
transmission and immuno­electron microscopy and 
by biochemical means8–10. Based on the current know­
ledge of their biogenesis, extracellular vesicles can be 
broadly divided into two main categories: exosomes and 
microvesicles (FIG. 1a).

The term exosome (which should not be confused 
with the exosome complex, which is involved in RNA 
degradation11) was initially used for vesicles of an 
unknown origin released from a variety of cultured cells 
and carrying 5ʹ­nucleotidase activity12. Subsequently, 
the term exosome was adopted to refer to membrane 

vesicles (30–100 nm in diameter) released by  reticulocytes 
during differentiation4. In essence, exosomes are intra­
luminal vesicles (ILVs) formed by the inward budding 
of endosomal membrane during maturation of multi­
vesicular endosomes (MVEs), which are intermedi­
ates within the endosomal system, and secreted upon 
fusion of MVEs with the cell surface13,14 (FIG. 1a–c). In the 
mid­1990s, exosomes were reported to be secreted by 
B lympho cytes15 and dendritic cells16 with potential func­
tions related to immune regulation and were considered 
for use as vehicles in antitumoural immune responses. 
Exosome secretion has now been extended to many 
different cell types, and its implications in inter cellular 
communication in normal and pathological states are 
now well documented5.

Microvesicles, formerly called ‘platelet dust’, were 
first described as subcellular material originating from 
platelets in normal plasma and serum17. Later, ectocyto­
sis, a process allowing the release of plasma membrane 
 vesicles, was described in stimulated neutrophils18. 
Although microvesicles have been studied mainly for 
their role in blood coagulation19,20, more recently, they 
were reported to have a role in cell–cell communication 
in various cell types, including cancer cells21, where they 
are generally called oncosomes. Microvesicles range in 
size from 50 nm to 1,000 nm in diameter but can be even 
larger (up to 10 μm) in the case of oncosomes. They are 
generated by the outward budding and fission of the 
plasma membrane and the subsequent release of vesicles 
into the extracellular space22 (FIG. 1a–c).

There is now evidence that each cell type tunes extra­
cellular vesicle biogenesis depending on its physiological 
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Abstract | Extracellular vesicles are a heterogeneous group of cell-derived membranous 
structures comprising exosomes and microvesicles, which originate from the endosomal system 
or which are shed from the plasma membrane, respectively. They are present in biological fluids 
and are involved in multiple physiological and pathological processes. Extracellular vesicles are 
now considered as an additional mechanism for intercellular communication, allowing cells to 
exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern 
extracellular vesicle biology is essential to shed light on the physiological and pathological 
functions of these vesicles as well as on clinical applications involving their use and/or analysis. 
However, in this expanding field, much remains unknown regarding the origin, biogenesis, 
secretion, targeting and fate of these vesicles.
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Figure 1 | Main features of extracellular vesicles. a | Extracellular vesicles 
comprise a heterogeneous population of membrane vesicles of various 
origins. Their size may vary (typically between 50 nm and 500 nm, but they 
can be even larger, measuring 1–10 μm). Over the past two decades, 
extracellular vesicles have been named based on their origin (cell type), 
size, morphology and cargo content but can now be classified into two 
distinct classes: exosomes and microvesicles. b | Extracellular vesicles are 
formed either by budding of the plasma membrane, in which case they 
are referred to as microvesicles, or as intraluminal vesicles (ILVs) within the 
lumen of multivesicular endosomes (MVEs). MVEs fuse with the plasma 
membrane to release ILVs that are then called exosomes. c | Processing of 
extracellular vesicles for observation by conventional transmission 
electron microscopy (TEM) causes their shrinking, leading to an artefactual 
cup-shaped morphology (top panel). However, when observed in a 
close-to-native state by cryo-electron microscopy (cryo-EM), they appear 
as round structures enclosed by double-leaflet membranes (bottom panel). 
d | Study of extracellular vesicle composition revealed that they can carry 
various cargoes, including proteins, lipids and nucleic acids, and this 
content can vary widely between cells and conditions. The particular 
composition will directly affect the fate and function of extracellular 
vesicles, strengthening the importance of selective cargo-sorting 

mechanisms. Of note, depending on the cell type, extracellular vesicles 
will display a set of cell-type-specific proteins that account for their 
specific fates and functions. Despite a different mode of biogenesis, 
exosomes and microvesicles display a similar appearance, overlapping size 
and often common composition that make it difficult to ascertain their 
origin once isolated from the extracellular medium or from biological 
fluids. ALIX, ALG‑2 interacting protein X; APP, amyloid precursor protein; 
ARF6, ADP‑ribosylation factor 6; ARMMs, arrestin‑ domain‑containing 
protein 1‑mediated microvesicles; CXCR4, CXC‑chemokine receptor 4; 
GAPDH, glyceraldehyde‑3‑phosphate dehydrogenase; HSP70, heat  
shock 70 kDa protein; HSPG, heparan sulfate proteoglycan; ICAM, 
intercellular adhesion molecule; LBPA, lyso‑bis‑phosphatidyl acid; LFA1, 
lymphocyte function‑associated antigen 1; MHC, major histocompatibility 
complex; PECAM1, platelet endothelial cell adhesion molecule; PLD, 
phospholipase D; PrP, prion protein; ROCK, RHO‑associated protein 
kinase; TCR, T cell receptor; TDP43, TAR DNA‑binding protein 43; TFR, 
transferrin receptor; TSG101, tumour susceptibility gene 101 protein; 
TSPAN, tetraspanin; VPS, vacuolar protein sorting‑associated 
protein. Images in part c courtesy of Roberta Palmulli (G. Raposo’s 
laboratory, URM144, Institut Curie) for conventional TEM and Daniel Levy 
(UMR168, Institut Curie, France) for cryo‑EM.
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Sorting machineries
Protein complexes mediating 
cargo sorting in endosomes.

Major histocompatibility 
complex
(MHC). A group of genes that 
code for cell surface 
glycoproteins that help the 
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self and non-self.
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An intracellular adaptor 
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syndecan-mediated signalling 
to the cytoskeleton.

Syndecan
A single-transmembrane-
domain heparan sulfate 
proteoglycan that binds a large 
variety of ligands, such as 
growth factors and fibronectin.

state and releases extracellular vesicles with particular 
lipid, protein and nucleic acid compositions5 (FIG. 1d). 
Because most published reports of extracellular vesicles 
have focused on their potential functions rather than 
on their origins, it is still unclear which sub­species of 
vesicles is responsible for any given effect. The current 
available protocols to recover extracellular vesicles from 
cell culture supernatants or liquid biopsy samples result 
in a heterogeneous population of vesicles of unknown 
origin23. Moreover, the diversity of isolated extracellular 
vesicle populations is further expanded by the inclusion 
of additional structures into the pool of extracellular 
vesicles, such as apoptotic bodies; migrasomes, which 
transport multivesicular cytoplasmic content during 
cell migration24; and arrestin­domain­containing pro­
tein 1 (ARRDC1)­mediated microvesicles (ARMMs)25, 
which are largely uniform microvesicles of ~50 nm in 
diameter that have been shown to bud directly from the 
plasma membrane in a manner resembling the budding 
of viruses and dependent on ARRDC1 and on endo­
somal sorting complex required for transport (ESCRT) 
proteins (similarly to a subpopulation of exosomes; 
see below).

The overlapping range of size, similar morphology 
and variable composition challenge current attempts 
to devise a more precise nomenclature for extracellular 
vesicles26,27. Nevertheless, novel isolation and character­
ization methods are being developed to allow a more 
thorough description of the respective functions of the 
different types of extracellular vesicles and to establish 
a suitable classification and terminology. Moreover, to 
validate the respective roles of exosomes and micro­
vesicles, efforts are being made to uncover mechanisms 
underlying the targeting of the different cargoes that 
these vesicles transport to the site of extracellular vesicle 
biogenesis, the generation and secretion of vesicles and 
their fate in target cells. Here, we review current know­
ledge and delineate unknown aspects of the essential 
cellu lar processes that govern the biology of mammalian 
extracellular vesicles, including their potential physio­
logical roles, as well as their relevance to disease and to 
clinical applications.

Biogenesis of extracellular vesicles
Exosomes and microvesicles have different modes of 
biogenesis (but both involve membrane­trafficking pro­
cesses): exosomes are generated within the endosomal 
system as ILVs and secreted during the fusion of MVEs 
with the cell surface, whereas microvesicles origin­
ate by an outward budding at the plasma membrane10. 
This nomenclature is still questionable as extracellular 
 vesicle biogenesis pathways may differ according to 
the producing cell type. For example, T cells primar­
ily generate extracellular vesicles from the cell surface 
with character istics of exosomes, probably by exploiting 
molecular components and mechanisms at the plasma 
membrane that are usually associated with the endo­
somal biogenesis of ILVs28. This peculiar biogenesis of 
exosomes from the plasma membrane might be specific 
to T cells, which also use the endosomal machinery for 
HIV budding at the plasma membrane29.

Even though the generation of microvesicles and 
exosomes occurs at distinct sites within the cell,  common 
intracellular mechanisms and sorting machineries are 
involved in the biogenesis of both entities. In many cases, 
these shared mechanisms hinder the possibility of dis­
tinguishing between the different vesicle sub populations5. 
Mechanistic details of extracellular vesicle biogenesis have 
only now started to be uncovered (as discussed below). 
First, cargoes scheduled for secretion within extracellular 
vesicles must be targeted to the site of production, either 
at the plasma membrane (for microvesicles) or at the 
limiting membrane of the MVE (for exosomes). Second, 
cargoes are enriched in the forming vesicles by a stepwise 
mechanism of clustering and budding followed by fission 
and vesicle release (FIG. 2).

Cargoes and their targeting to the site of extracellular 
vesicle generation. The nature and abundance of extra­
cellular vesicle cargoes30 (FIG. 1d) are cell­type­specific and 
are often influenced by the physiological or pathological 
state of the donor cell, the stimuli that modulate their 
production and release and the molecular mech anisms 
that lead to their biogenesis31. Cargoes are the first regu­
lators of extracellular vesicle formation. As reported for 
exosomes, an ectopic expression of a particular cargo, 
such as the expression of the major  histocompatibility 
 complex (MHC) class II32, promotes MVE formation 
with a consequent release of extra cellular vesicles, prob­
ably by recruiting sorting machineries that will promote 
MVE and ILV generation32,33.

Exosomal membrane cargoes reach endosomes 
from the Golgi apparatus or are internalized from the 
plasma membrane before being sorted to ILVs during 
endosome maturation34. Hence, cargoes that are prefer­
entially recycled to the plasma membrane are not likely 
to be enriched in exosomes unless their recycling is 
impaired, as is the case for the transferrin receptor in 
reticulocytes35. Therefore, impairment or depletion of 
regulators of endosomal recycling and retrograde trans­
port from endosomes to the Golgi might generally affect 
the targeting of some cargoes to extracellular vesicles. 
In this context, the protein syntenin, by acting both in 
the recycling36 and in the sorting of syndecan in MVEs37 
for exosome biogenesis, seems to be a potential regu­
lator of the crosstalk between endocytic recycling and 
 endosomal targeting of potential exosomal cargoes.

Modulation of endocytosis or recycling of  cargoes 
to the plasma membrane would also impinge on their 
targeting at the site of microvesicle biogenesis. For 
example, the small GTPase ADP­ribosylation  factor 6 
(ARF6) was identified as a regulator of selective recruit­
ment of proteins, including β1 integrin receptors, MHC 
class I molecules, membrane type 1­matrix metallo­
proteinase 1 (MT1­MMP; also known as MMP14) and 
the vesicular SNARE (v­SNARE) vesicle­associated 
membrane protein 3 (VAMP3), into tumour­derived 
microvesicles38,39. In addition to ARF6­regulated endo­
somal trafficking, VAMP3 mediates the trafficking 
and incorporation of MT1­MMP into tumour­derived 
microvesicles in a CD9­dependent manner. This sug­
gests that VAMP3­positive and ARF6­positive recycling 
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endosomes are a site of MT1­MMP recycling to the cell 
surface and trafficking to microvesicles. Such crosstalk 
between recycling and microvesicle biogenesis is also 
illustrated by studies reporting that the small GTPase 
RAS­related protein RAB22A colocalizes with budding 
microvesicles and mediates packaging and loading of 
cargo proteins in hypoxic breast cancer cells40.

Machineries involved in the biogenesis of exosomes. 
Exosomes are generated as ILVs within the lumen of 
endosomes during their maturation into MVEs, a pro­
cess that involves particular sorting machineries. These 
machineries first segregate cargoes on microdomains 
of the limiting membrane of MVEs with consequent 
inward budding and fission of small membrane vesicles 
containing sequestered cytosol (FIG. 2).

The discovery of the ESCRT machinery as a driver 
of membrane shaping and scission was the first break­
through in uncovering the mechanisms involved in the 
formation of MVEs and ILVs41. The ESCRT machin­
ery acts in a stepwise manner wherein ESCRT­0 and 
ESCRT­I subunits cluster ubiquitylated transmembrane 
cargoes on microdomains of the limiting membrane of 
MVEs and recruit, via ESCRT­II, the ESCRT­III sub­
complexes that perform budding and fission of this 
microdomain (FIG. 2). Accordingly, HRS (ESCRT­0; also 
known as HGS) appears to be required for exosome 
 formation and/or secretion by dendritic cells42.

The role of the ESCRT machinery in ILV biogenesis 
and the presence of some ESCRT subunits in exosomes 
opened an avenue to understand and modulate the for­
mation of exosomes through manipulation of the ESCRT 

Figure 2 | Biogenesis of extracellular vesicles. Several sorting machineries are involved in the different steps required 
for generating exosomes and microvesicles. First, lipids and membrane‑associated proteins are clustered in discrete 
membrane microdomains of the plasma membrane for microvesicles (top) and of the limiting membrane of the 
multivesicular endosome (MVE) for exosomes (bottom) (step 1). Such microdomains certainly also participate in the 
recruitment of soluble components, such as cytosolic proteins and RNA species, that are fated for sorting in extracellular 
vesicles (step 2). Altogether, formation of these clustered microdomains together with additional machineries promotes 
membrane budding followed by a fission process either at the plasma membrane towards the extracellular medium or at 
the limiting membrane of the MVE towards the lumen of the MVE (step 3). Transmembrane proteins sorted on exosomes 
and microvesicles keep the same topology as at the plasma membrane. Mechanisms of exosome biogenesis are fairly well 
understood and importantly involve subunits of endosomal sorting complex required for transport (ESCRT), although to 
different degrees — ESCRT‑III is required for the scission of the intraluminal vesicles (ILVs) into the MVE lumen, but cargo 
clustering and membrane budding can occur by either ESCRT‑dependent or ESCRT‑independent mechanisms. The 
mechanisms involved in the biogenesis of microvesicles are still being revealed. Notably, the molecular machineries that 
act at the different steps of extracellular vesicle biogenesis are partly common to exosomes and microvesicles (including 
ESCRT proteins and the generation of ceramide by sphingomyelinase). One exception is the flipping of specific lipid 
species between the leaflets of the budding membrane, which has been uniquely reported for microvesicle budding. 
Thus, it is difficult to ascertain the origin of the produced extracellular vesicle by simply impairing the function of a given 
mechanism involved in the biogenesis of these vesicles. ALIX, ALG‑2 interacting protein X; ARF6, ADP‑ribosylation factor 6.
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Ceramide
A lipid molecule composed of 
sphingosine and a fatty acid 
linked through an amide bond; 
in fact, many chemically 
diverse ceramides have been 
described, showing that 
ceramide is not a single 
molecular species but rather 
a family of related molecules.

Sphingomyelin
A type of sphingolipid found 
in animal cell membranes.

Tetraspanin family
A family of proteins with four 
transmembrane domains that 
allow association with other 
members of the family and 
with other proteins to generate 
dynamic membrane domains.

Glycosylphosphatidylinositol 
(GPI)-anchored proteins
Proteins with a 
post-translational modification 
comprising a phosphoethanol-
amine linker, a glycan core and 
a phospholipid tail. This 
modification anchors the 
protein to the outer leaflet 
of the cell membrane.

Lipid rafts
Specialized membrane 
microdomains enriched in 
cholesterol and 
glycosphingolipid that serve 
as organizing centres for 
the assembly of signalling 
molecules.

KRAS–MEK signalling 
pathway
The interaction between the 
proto-oncogene KRAS, which 
encodes a small GTPase, and 
its downstream effector, the 
canonical RAF proto-oncogene 
serine/threonine-protein kinase 
(RAF)–MEK–ERK signalling 
pathway. Both pathways have 
roles in cell division, cell 
differentiation and apoptosis.

Major vault protein
The main component of 
ribonucleoparticles termed 
vaults, which also contain two 
additional proteins, the vault 
poly(ADP-ribose) polymerase 
(vPARP) and telomerase-
associated protein 1 (TEP1), 
and several short, untranslated 
vault RNAs (vRNAs). It has 
been implicated in the 
regulation of several cellular 
processes, including transport 
mechanisms, signal 
transmission and 
immune responses.

components. A medium­throughput RNA interference 
screen targeting23 multiple components of the ESCRT 
machinery and associated proteins has revealed various 
roles for selected members of this family in exosome 
generation. Their inactivation affects either the effi­
ciency of secretion or the composition of the secreted 
vesicles, indicating that some ESCRT components could 
act selectively on MVE and ILV subpopulations fated for 
secretion as exosomes43. The canonical ESCRT pathway 
can be intersected by syntenin and the ESCRT accessory 
protein ALG­2 interacting protein X (ALIX; also known 
as programmed cell death 6­interacting protein), which 
bridge cargoes and the ESCRT­III subunit vacuolar pro­
tein sorting­associated protein 32 (VPS32; also known 
as CHMP4)37.

Exosomes can also be formed in an ESCRT­
independent manner, which was revealed by studies 
showing that MVEs, featuring ILVs loaded with CD63, 
are still formed upon depletion of components of the 
four ESCRT complexes44. The first ESCRT­independent 
mechanism of exosome biogenesis was shown to require 
generation of ceramide by neutral type II sphingo­
myelinase, which hydrolyses sphingomyelin to ceramide45. 
Ceramide may then allow the generation of membrane 
subdomains46, which impose a spontaneous negative cur­
vature on the membranes. Alternatively, ceramide could 
be metabolized to sphingosine 1­phosphate to activ ate 
Gi­protein­coupled sphingosine 1­phosphate receptor 
that appears essential for cargo sorting into exosomal 
ILVs47 (FIG. 2). In addition, proteins of the  tetraspanin 
family have been shown to regulate ESCRT­independent 
endosomal sorting. One of these proteins is CD63, which 
is particularly enriched on the surface of exosomes and 
has been shown to be involved in endo somal sorting in 
melanocytes48,49, in cargo (apolipoprotein E) targeting 
to exosomes secreted by melanoma cells50 and in the 
biogenesis of exosomes in fibroblasts from patients with 
Down syndrome51. The tetraspanins CD81, CD82 and 
CD9 are also directly involved in the sorting of various 
cargoes to exosomes52,53. Mechanistically, these proteins 
form clusters and dynamic membrane platforms with 
other tetraspanins and with different transmembrane 
and cytosolic proteins54 probably acting in the for­
mation of the microdomains that will bud. Moreover, 
recent structural analysis of the tetraspanin CD81 
revealed a cone­like structure with an intramembrane 
cavity that can accommodate cholesterol and that is 
likely to be shared by other tetraspanins. Clustering of 
several cone­shaped tetraspanins could then induce 
inward budding of the microdomain in which they are 
enriched55 (FIG. 2). However, tetraspanins also regulate 
the intracellular routing of cargoes, such as integrins56, 
towards MVEs, which indicates that impairment of their 
function may affect different steps of exosome gener­
ation. Thus, it seems that both ESCRT­dependent and 
ESCRT­independent mechanisms operate in exosome 
biogenesis, and their contributions may vary depending 
on the cargoes, which recruit them, and the cell type.

As mentioned above, sorting of transmembrane car­
goes into extracellular vesicles is largely dependent on 
endosomal sorting machineries. However, additional 

mechanisms contribute to the targeting of selective 
soluble or membrane­associated cargoes to exosomes. 
For example, the sequestration of cytosolic proteins into 
ILVs can result from co­sorting with other proteins, such 
as the chaperones heat shock 70 kDa protein (HSP70) 
and heat shock cognate 71 kDa protein (HSC70), which 
are found in exosomes derived from most cell types57,58. 
Membrane cargoes, such as glycosylphosphatidylinositol 
(GPI)-anchored proteins are present in exosomes, prob­
ably because of their affinity for lipid domains and lipid 
rafts that could be directly involved in ILV generation 
through their effects on biophysical properties of mem­
branes59. It has also been proposed that some cytosolic  
proteins modified by ubiquitylation60 or farnesyl­
ation61 are segregated in ILVs and in exosomes, but the 
underlying mechanisms for their enrichment in these 
compartments are still lacking. Apart from proteins, 
extracellular vesicles also carry nucleic acids, includ­
ing RNAs (mRNAs and non­coding RNAs, including 
microRNAs (mi    RNAs))62,63 and DNA sequences64,65. 
Interestingly, mi    RNAs have been shown to be differen­
tially sorted to exosomes depending on their sequence 
(presence of specific motifs)66, which indicates that 
incorporation of nucleic acids into exosomes is regu­
lated. However, the relative contributions of passive and 
active loading of RNAs into extracellular vesicles remain 
unclear67. The mechanisms involved in targeting nucleic 
acids to exosomes are so far elusive. Different machiner­
ies have been proposed to perform specific nucleic acid 
sorting, including the ESCRT­II subcomplex that could 
act as an RNA­binding complex68, the tetraspanin­ 
enriched microdomains that could sequester RNA­
binding proteins in the membrane subdomains69 or the 
miRNA­induced silencing complex (miRISC) and pro­
tein argonaute 2 (AGO2), which mediate RNA­silencing 
processes70. New regulators of miRNA sorting into 
exosomes have also recently been described and include 
the KRAS–MEK signalling pathway acting through AGO2 
(REF. 71), major vault protein72 and Y-box-binding protein 1 
(also known as YBX1)73.

In sum, exosome biogenesis is certainly complex, 
varies depending on the cargo and on the cell type and 
can be influenced by other signals and pathological 
stimuli that the cell can receive. The balance of these 
pathways leading to changes in the compositional reper­
toire of exosomes also changes over the course of the 
differentiation process, as reported for reticulocytes74, 
or during cell maturation, as shown for dendritic cells75. 
Accordingly, most cells host subpopulations of MVEs 
distinguished by different lipid and protein compositions 
and morphology52,76. In this context, different sorting 
mechanisms can act on the same endosomal compart­
ment49, or different machineries can be used for target­
ing the same cargo (for example, MHC class II, which 
can be targeted to MVEs by both ESCRT­dependent 
and ESCRT­independent mechanisms)52,77, or on differ­
ent maturation products of the cargo (as is the case for 
the melanocyte protein PMEL, for which the luminal 
domain, which is generated by proteolysis, is sorted by 
ESCRT­independent mechanisms, whereas the trans­
membrane domain is sorted by an ESCRT­dependent 
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Y-Box-binding protein 1
A transcription factor shown to 
have a role in oncogenic cell 
transformation, multidrug 
resistance and the 
dissemination of tumours.

Aminophospholipid 
translocases
Enzymes that transport 
phosphatidylserine and 
phosphatidylethanolamine 
from one side of a bilayer 
to the other.

Scramblases
Proteins responsible for the 
translocation of phospholipids 
between the inner and outer 
leaflets of a cell membrane.

Calpain
A calcium-dependent protein 
expressed ubiquitously in 
mammals and many other 
organisms.

mechanism)49. Therefore, several mechanisms could 
act concomitantly or sequentially on forming MVEs, 
thereby allowing the sorting of diverse cargoes at differ­
ent stages of maturation of the MVE78; alternatively or 
concomitantly, distinct subpopulations of MVEs may 
exist and may be targeted by different machineries5,49 
(FIG. 3). Overall, these data support a model whereby the 
biogenesis of exosomes involves several distinct mech­
anisms for the preferential recruitment of cargoes prob­
ably generating heterogeneous populations of ILVs and 
exosomes within common or distinct subpopulations of 
MVEs5,6. Overall, as major regulators of the composi­
tion of exosomes, endosomal sorting machineries seem 
to be main determinants of their functional properties. 
Therefore, agents or activities affecting early endosomal 
sorting machineries and their dynamics should be con­
sidered when investigating exosome generation and for 
their manipulation.

Machineries involved in the biogenesis of microvesicles. 
Whereas blebbing from the plasma during apoptosis has 
long been known to produce microvesicles in the form of 
apoptotic bodies79, the release of microvesicles from the 
plasma membrane of healthy cells and the mechanisms 
involved in this secretion have only recently started 
to emerge. This biogenesis requires several molecular 
rearrangements within the plasma membrane, includ­
ing changes in lipid components and protein compo­
sition, and in Ca2+ levels31. Ca2+­dependent enzymatic 
machiner ies including aminophospholipid translocases 
(flippases and floppases), scramblases and calpain drive  
rearrangements in the asymmetry of membrane phos­
pho lipids (exposition of phosphatidylserine from the 
inner leaflet to the cell surface), which causes phys­
ical bending of the membrane and restructuring of the 
underlying actin cytoskeleton, which favour membrane 
budding and formation of microvesicles21,80 (FIG. 2). 

Figure 3 | Origin of exosome diversity in relation to sorting machineries. The diversity of extracellular vesicle 
subpopulations with distinct composition and function that are generated by a given cell type is often attributed to 
the production of distinct sets of exosomes and microvesicles23,192. This diversity is well exemplified by the secretion of 
different exosome subpopulations — with distinct morphology and composition — from the apical and basolateral 
domains of polarized cells such as intestinal epithelial cells193–195. Such exosome subpopulations probably originate from 
subpopulations of multivesicular endosomes (MVEs). The distinct compositions of these subpopulations reflect the 
presence of multiple sorting machineries that act on the MVE compartment. It remains to be determined whether 
the different sorting machineries act on distinct subpopulations of MVEs (see right‑hand side) or concomitantly in single 
MVEs to generate distinct subpopulations of intraluminal vesicles (ILVs) (see left‑hand side). The reality is most likely a mix 
of these two possibilities, with distinct contributions depending on the cell type. Recruitment of a given sorting machinery 
can depend on the maturation stage of the producing cells52,74, on the post-translational modification of the cargo 
(for example, proteolytic processing or ubiquitylation)49,193 or potentially on the stage of maturation of the MVEs. 
The type of sorting machinery recruited to MVEs will also specify the fate of MVEs between exosome secretion and 
lysosomal degradation. ESCRT, endosomal sorting complex required for transport.
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RHO family of small 
GTPases
A family of small signalling 
G proteins implicated in the 
regulation of many aspects of 
actin dynamics.

Brush border
The microvillus-covered surface 
of epithelial cells found in 
enterocytes in the intestine.

Warburg effect
An aerobic process whereby 
cancer cells produce energy 
by a high rate of glycolysis 
followed by lactic acid 
fermentation in the cytosol 
rather than by oxidation of 
pyruvate in the mitochondria.

Zipcode RNA sequence 
motifs
cis-Acting regulatory 
sequences (25 nucleotides) 
in the 3ʹ-untranslated region 
(3ʹ UTR) of mRNA transcripts 
that mediate binding of a 
ribonuclear protein complex 
to the mRNA, thereby 
temporarily blocking mRNA 
translation, and that mediate 
movement of mRNA via the 
cytoskeleton to a cellular 
location where mRNA is 
released from protein binding 
and translation initiates.

Immunological synapses
Specialized cell–cell junctions 
between a thymus-derived 
lymphocyte (T cell) and an 
antigen-presenting cell.

Hedgehog
An essential signalling 
molecule, termed a 
morphogen, required for 
numerous processes during 
animal development.

ISGylation
A ubiquitin-like modification 
that controls exosome release 
by decreasing the number 
of multivesicular endosomes.

A genetic defect in the activity of the lipid scramblase 
suppresses the exposure of phosphatidylserine on blood 
platelets and the production of procoagulant­ containing 
micro vesicles80. However, even when the membrane 
lipid asymmetry is maintained, microvesicle bio genesis 
might proceed81,82. These observations suggest that other 
lipids, and the domains that they form, contribute to 
microvesicle biogenesis. One important lipid compo­
nent is cholesterol, which is abundant in microvesicles 
and the pharmaco logical depletion of which impairs 
 microvesicle  generation in activated neutrophils83.

In addition to lipids, cytoskeletal elements and their 
regulators are certainly required for microvesicle bio­
genesis. The activity of the RHO family of small GTPases 
and of the RHO­associated protein kinase (ROCK), 
which are important regulators of actin dynamics, 
induces microvesicle biogenesis in different populations 
of tumour cells84. As another example, in the enterocyte 
brush border, myosin 1a distributed along the micro­
villar tips exerts plus­end­directed force on the apical 
membrane, leading to the formation and release of 
gut microvesicles85.

The biogenesis of tumour­derived microvesicles 
(oncosomes) is also tightly associated with metabolic 
changes, the so­called Warburg effect86. In breast can­
cer cells, elevated glutaminase activity relies on micro­
vesicle secretion and is dependent on RHO GTPases87, 
inhibition of which blocks microvesicle biogenesis. This 
suggests that formation and loading of micro vesicles 
are linked to their metabolic capability and to the RHO 
GTPase signalling pathway, even beyond its role in 
 actomyosin regulation.

As for cargo targeting to exosomes, lipids and other 
membrane­associated cargoes are localized to sites of 
microvesicle budding through their affinity for lipid 
rafts or as is the case for oligomeric cytoplasmic pro­
teins, by their anchoring to plasma membrane lipids88,89 
— two mechanisms that are strikingly analogous to the 
 budding of HIV and other retroviruses. Cytosolic com­
ponents fated for secretion into microvesicles require 
their binding to the inner leaflet of the plasma mem­
brane. This association is dependent on their respective 
plasma membrane anchors (palmitoylation, prenylation, 
myristoylation) and the establishment of high­order 
complexes, which concentrates them to the small mem­
brane domains from which forming microvesicles will 
bud88,89. It is still unclear how nucleic acids, which are 
generally found in microvesicles, are targeted to the cell 
surface. One possible mechanism revealed from studies 
of cancer cells suggests the involvement of conserved 
 zipcode RNA sequence motifs in the 3ʹ untranslated regions 
in mRNA targeting into microvesicles90, but the details 
of this process remain to be discovered.

The release of extracellular vesicles
Once formed, microvesicles pinch off from the plasma 
membrane, whereas exosome secretion requires the 
transport and apposition of MVEs to the plasma mem­
brane to fuse with and release ILVs (as exosomes) into 
the extracellular milieu. The different intracellular 
events leading to their secretion are likely to impose a 

time difference between generation and release for both 
types of extracellular vesicles. The release of microvesicles 
would probably be faster, as cargoes only need to remain 
at the plasma membrane to be targeted to micro vesicles, 
and their subsequent release would directly  follow 
their gener ation and fission. By contrast, the release of 
exosomes requires additional steps to sort cargoes to 
MVEs, then to ILVs and extra steps to target MVEs to the 
plasma membrane and to prime them for secretion. Such 
differences could be relevant from a functional point of 
view as they impose additional regulatory checkpoints for 
the secretion of exosomes compared with micro vesicles. 
Whereas the release may be constitutive in some cases, 
such as embryonic development, cell differenti ation and 
in general during maintenance of physio logical homeo­
stasis, this process may also be subjected to further 
modu lation by the physiological state of the cell and by 
the requirement for the supply of key structural com­
ponents or other mechanisms that would act as triggers 
for secretion such as the generation of immunological 
 synapses52,91. As the release of microvesicles is likely to be 
the direct consequence of their generation and fission, 
in the next sections, we focus on exosome release and 
only summarize the few studies on potential mechanisms 
that could be involved in microvesicle secretion.

Avoiding MVE degradation. MVEs are primarily des­
tined to fuse with lysosomes for degradation. However, 
mechanisms preventing their degradation and allow­
ing MVE secretion exist, thereby enabling exosome 
release (FIGS 3,4). The regulation of the balance between 
degrad ative and secretory capacity of MVEs remains 
largely unexplored, but the establishment of this balance 
undoubtedly affects cell function. For example, lysosomal 
degradation defects that promote exosome secretion have 
been shown to enable efficient elimin ation of unwanted 
and/or defective proteins such as amyloids in the con­
text of neurodegenerative diseases92,93. The impairment 
of lysosomal activity by inhibiting the endosomal pro­
ton pump V­ATPase also leads to an increase in exosome 
release94,95 and, for example, has been shown to trigger 
apical secretion of Hedgehog­related peptides through a 
multivesicular compartment in Caenorhabditis elegans96.

Some insights into how the balance between target­
ing MVEs for secretion and degradation is established 
have recently emerged. A first level of regulation of this 
balance is probably imposed by the sorting machineries 
at MVEs. While the different components of the ESCRT 
machinery have various effects on exosomes secretion23 
and are generally associated with degradative MVEs, the 
syndecan–syntenin–ALIX pathway seems to be restricted 
so far to exosome secretion37. Along the same lines, 
MHC class II is targeted to MVEs fated for lysosomal 
degradation through ubiquitylation (probably recruit­
ing ESCRT machinery) while ubiquitin­independent 
(and probably ESCRT­independent) mechanisms tar­
get MHC class II to MVEs fated for secretion52,77. The 
mechanisms under lying this balance are still unclear 
but involve components of various sorting machineries 
such as ESCRT­I component tumour susceptibility gene 
101 protein (TSG101), which is subject to ISGylation that 
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Caveolin
The principal component of 
caveolae, which are involved 
in receptor (clathrin)-
independent endocytosis, 
mechanotransduction  
and lipid homeostasis.

favours its lysosomal degradation (and thereby impair­
ment of exosome secretion)94, or tetraspanin 6 (REF. 97), 
over expression of which slows lysosomal degradation 
probably by recruiting sorting machinery that involves 
the syntenin pathway. These findings are in accordance 
with the involvement of ESCRT­independent machiner­
ies in the generation of MVEs fated for exosome secretion 
but not for lysosomal degradation49,52,98.

A similar balance exists between exosome secretion 
and macroautophagy — the process that drives degrad­
ation of superfluous or damaged cellular components in 
the lysosome to maintain cellular homeostasis and that 

promotes energy conservation under stress. More specifi­
cally, the fusion of MVEs with the autophagosome would 
promote their degradation and prevent exosome secre­
tion99 (FIG. 4). In this context, it has been shown that the 
prion protein (PrP) can promote exosome secretion by 
inhibiting autophagosome formation and that it does so 
by interacting with caveolin and modulating its inhibitory 
effect on autophagosome formation100. Of interest, chem­
ical inhibition of autophagy increases the recovery of 
autophagosome­associated proteins in the isolated exo­
somal pellet but not of exosome­enriched proteins101. This  
suggests that the capacity of MVEs to secrete exosomes 
is counterbalanced by their fusion with the autophago­
some. Autophagosomes and MVEs can both secrete their 
contents, but the molecular mechanisms regulating these 
secretory pathways are likely to be distinct.

Transport of MVEs. As discussed above, MVEs fuse 
either with lysosomes for degradation of their content 
or with the plasma membrane. In both cases, a two­
step process involving their transport (motility) and 
fusion is required, but the effectors involved in targeting 
MVEs to the lysosomes or to the plasma membrane are 
certainly distinct.

In general, intracellular transport involves the associ­
ation of organelles with the cytoskeleton (actin and 
microtubules), associated molecular motors (dynein, 
kinesins and myosins) and molecular switches (small 
GTPases)102,103.

Exosome secretion is provided by the oriented secre­
tion of these vesicles towards the immunological syn­
apse between antigen­presenting cells and T cells during 
antigen presentation52,104. This implies that at least 
in the context of immunological synapses, MVEs follow 
the network of microtubules oriented by the microtubule 
organizing centre (typically the centrosome)91 (FIG. 4). 
The molecular motors involved in this process remain 
to be determined but certainly counterbalance those 
that regulate the transport of MVEs towards lysosomes. 
Targeting to lysosomes occurs by retrograde transport 
on microtubules (towards microtubule minus ends), and 
the RAB­GTPase RAB7 and its associated proteins pro­
mote the recruitment of the retrograde molecular motor 
dynein that targets MVE to lysosomes105. Interestingly, 
RAB7 is also required for the release of exosomes37. 
These dual effects on exosome secretion seem to rely on 
the ubiquitylation status of RAB7, which has been shown 
to promote the recruitment of the machinery involved in 
lysosomal targeting of MVEs at the expense of exosome 
secretion106. Curiously, in endosomes, the recruitment 
of RAB7 leading to lysosomal targeting is stimulated by 
cholesterol at the limiting membrane, whereas MVE­
containing ILVs enriched in cholesterol have been 
shown to undergo preferential secretion as exosomes107. 
Thus, dynamic changes in the composition of the limit­
ing membrane of MVEs, through incorporation of speci­
fic lipids and proteins into ILVs, is likely to regulate the 
fate of MVEs towards degradation or secretion.

RAB27A and RAB27B32 and their respective effec­
tors, synaptotagmin­like protein 4 and exophilin 5, are 
also essential for exosome secretion. RAB27B regulates 

Figure 4 | Interdependency of intracellular trafficking routes in the generation 
of extracellular vesicles. The generation of exosomes and microvesicles requires tuned 
regulation of multiple intracellular trafficking steps (blue arrows for exosomes, green 
arrows for microvesicles) that influence the targeting of cargoes to the site of 
extracellular vesicle biogenesis and, for exosomes, the fate of the multivesicular 
endosome (MVE) from which these vesicles originate. Cargoes targeted to MVEs 
originate from endocytosis at the plasma membrane or are directly targeted to MVEs or 
to early sorting endosomes via the biosynthetic pathway (from the trans‑Golgi network 
(TGN)). Retrograde transport towards the TGN or recycling back to the plasma 
membrane will divert cargoes from their targeting to the MVE (dashed arrows) and 
therefore their incorporation into intraluminal vesicles (ILVs). These sorting processes are 
regulated by various RAS‑related protein (RAB) GTPases. Once matured, MVEs that are 
not targeted to lysosomes or autophagosomes for degradation are transported along 
microtubules to the plasma membrane. At this step, docking and fusion are the two final 
processes required for exosome release. RABs, actin and SNARE proteins are involved in 
these steps of exosome release. In the case of microvesicle biogenesis, endocytic uptake 
(dashed arrow) and recycling will, respectively, decrease and increase the targeting of 
membrane (and membrane-bound) cargoes to microvesicles. Of note, as the release of 
exosomes requires tightly regulated steps of transport, tethering and fusion of MVE 
to the plasma membrane (apart from cargo sorting), this could account for the time 
difference between the generation and release of the two types of extracellular vesicles. 
ARF6, ADP‑ribosylation factor 6; RAL‑1, RAL (Ras‑related GTPase) homolog; SNAP23, 
synaptosomal‑associated protein 23; SYX‑5, syntaxin 5; VAMP3, vesicle‑associated 
membrane protein 3. *Denotes Caenorhabditis elegans proteins.
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SNARE proteins
Proteins named from SNAP 
(soluble NSF attachment 
protein) receptor; their primary 
role is to mediate the fusion of 
intracellular vesicles with their 
target membrane-bound 
compartments.

Synaptotagmin family
A family of membrane-
trafficking proteins that 
has been implicated in 
calcium-dependent 
neurotransmitter release.

Protein kinase C
A serine/threonine kinase that 
plays important roles in several 
signal transduction cascades 
by controlling the function of 
other proteins through their 
phosphorylation.

P2X7 receptors
Trimeric ATP-gated cation 
channels found predominantly, 
but not exclusively, on immune 
cells; these receptors have 
been implicated in various 
inflammatory, immune, 
neurological and 
musculoskeletal disorders.

the motility of MVEs towards the plasma membrane, 
and both RAB27 isoforms act on the step following MVE 
transport, which is the docking at the plasma membrane 
to promote fusion, thereby increasing exosome secre­
tion. The role of RAB27A in MVE docking involves 
rearrange ment of sub­membrane actin cytoskeleton108, 
a step that is common to all mechanisms involving 
vesicular secretion. RAB27 also controls the secretion 
of secretory lysosomes, the so called lysosome­related 
organ elles109, which indicates that MVEs capable of 
exosome secretion may be considered as a specialized 
compartment rather than a simple MVE subtype. Of 
note, RAB27 isoforms are not constitutively expressed 
in all cell types, which implies that each cell type may 
adapt its own secretory machineries for exosome secre­
tion. This is illustrated by the reported involvement 
of additional RABs and their effectors, such as effec­
tors of RAB11 and RAB35 (REFS 110,111), in the direct 
 regulation or the potential priming of MVE secretion.

Fusion of MVEs with the plasma membrane. The final 
step of exosome secretion requires the fusion of MVEs 
with the plasma membrane to release ILVs as exosomes 
(FIG. 4), a process probably mediated by SNARE proteins 
and synaptotagmin family members112. A SNARE complex 
known to be involved in the exocytosis of conventional 
lysosomes consists of VAMP7 on the lysosomes, syn­
taxin 7 on the plasma membrane and the lysosomal regu­
latory protein synaptotagmin 7 (REF. 113). This complex is 
involved in exosome secretion in some cells (the human 
leukaemia cell line K562)114 but not in others (MDCK 
cells)115. The process of exosome secretion has been 
demonstrated in several cell types to be regulated by Ca2+ 
(REFS 116–118), which may have a role in the activation of 
the SNARE complexes. The implication of synapto somal­
associated protein 23 (SNAP23) — a SNARE shown to 
regulate secretion of lysosome­related organelles from 
mastocytes119 — also in exosome secretion120 strength­
ens the notion that MVEs are indeed specialized secre­
tory organelles. Additional SNARE proteins involved in 
exosome secretion, such as the synaptobrevin homologue 
Ykt6 (REF. 121) in Drosophila, syntaxin 5 in C. elegans122 
and syntaxin 1a123 in mammals, again reflect the diversity 
of regulators that could be involved in exosome secretion, 
most likely depending on the organism, the cell type or 
the MVE subtype. It should be noted that most of the 
studies on the intracellular regulators of exosome release 
came from analysis of exosomal pellets isolated from 
supernatants from cell cultures treated with inhibitors 
or interfering RNAs against potential targets, ignoring 
the complexity of intracellular pathways that might be 
affected by these perturbations in the producing cells. 
Moreover, the quantity of extracellular vesicles recovered 
in the supernatant does not take into account the frac­
tion of vesicles that remains tethered (not fully released) 
at the plasma membrane of the producing cells95 or the 
fraction of extracellular vesicles that can be recaptured 
by the same cell124. A better understanding of this step 
certainly requires the development of new tools and tech­
niques to follow docking and fusion of MVEs with the 
plasma membrane.

Release of microvesicles. The release of micro vesicles 
requires their fission from the plasma membrane, 
a mechanism that is dependent on the interaction of 
actin and myosin with a subsequent ATP­dependent 
contraction85,125. As such, the activation of small GTP­
binding proteins including ARF6 and ARF1 leads to the 
phosphorylation of myosin light chain (MLC) and acto­
myo sin contraction, which allows the vesicles to bud off 
from the membranes of cancer cells39,126,127. In HeLa cells, 
another regulator of actin dynamics, Cdc42, has been 
shown to be involved, but the underlying mechanism is 
still not known84. Interestingly, TSG101 and the ATPase 
VPS4, mostly involved in exosome generation as part 
of the ESCRT machinery, were reported to participate 
in the scission and release of ARMMs25. Shedding of 
ESCRT­dependent microvesicles was also reported in 
C. elegans embryos upon loss of TAT­5, the conserved 
flippase P4­ATPase, which leads to the cytosolic expo­
sure of phosphatidylethanolamine, an aminophospho­
lipid asymmetrically enriched in the inner leaflet of the 
membrane bilayer128. This scenario mirrors the expo­
sure of phosphatidylserine by lipid translocation, which, 
as discussed above, can promote membrane bending and 
microvesicle budding (FIG. 2).

The involvement of cell signalling pathways in 
microvesicle release is strongly supported by reports 
showing that removal of serum, and therefore growth 
factors acting on their respective receptors and down­
stream effectors, prevents microvesicle release129. It is 
known that strong microvesicle release is induced 
by increased Ca2+ concentration, which by activating 
scramblase and calpain leads to a loss of membrane 
phospholipid asymmetry and the reorganization of the 
cytoskeleton (see above) or through the activation of 
 protein kinase C by phorbol esters130. Release of micro­
vesicles has also been shown to depend on ATP­mediated 
activation of P2X7 receptors, which leads to rearrange­
ments of the cell membrane131,132. Mechanistically, this 
process is associated with the translocation of the acidic 
sphingomyelinase to the plasma membrane, where 
it generates ceramide, thereby promoting membrane 
bending and microvesicle shedding133. The involve­
ment of acidic rather than neutral sphingomyelinase 
in microvesicle release suggests that different members 
of the sphingomyelinase family control the biogenesis of 
exosomes45 (see above) and the release of microvesicles, 
but in both cases, these mechanisms would support 
ESCRT­independent vesicle release.

Targeting to recipient cells
Once released into the extracellular space, extra cellular 
vesicles can reach recipient cells and deliver their 
contents to elicit functional responses and promote 
pheno typic changes that will affect their physiological 
or pathological status. Extracellular­vesicle­mediated 
intercellular communication requires docking at the 
plasma membrane, followed by the activation of surface 
receptors and signalling, vesicle internalization (endo­
cytosis) or their fusion with target cells (FIG. 5). The 
mode of  vesicle interaction with the cell surface and the 
mechanisms that mediate the transfer of extracellular 
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Follicular dendritic cells
Cells of the immune system 
found in primary and 
secondary lymph follicles 
of the B cell areas of the 
lymphoid tissue.

Lectins
Carbohydrate-binding proteins 
that are highly specific for 
sugar moieties.

Proteoglycans
Heavily glycosylated proteins 
consisting of a ‘core protein’ 
with one or more covalently 
attached glycosaminoglycan 
(GAG) chains.

Intercellular adhesion 
molecules
(ICAMs). Members of the 
immunoglobulin superfamily 
that are involved in 
inflammation, immune 
responses and intracellular 
signalling events.

vesicle cargoes are not fully unravelled. These processes 
are complex and depend on the origin of extracellular 
vesicles and on the identity and origin of the recipient 
cells, and they seem to be linked to the downstream 
effects and processes instigated by these vesicles134. 
Current studies have been mostly focused on investigat­
ing membrane interaction and intercellular fate of pools 
of exosomes, but despite different contents and sizes, the 
principles of uptake and general intercellular trafficking 
of different subpopulations of extracellular vesicle are 
likely to be shared.

Binding of extracellular vesicles to their target cells. 
Target cell specificity is likely to be determined by 
speci fic interactions between proteins enriched at 
the surface of extracellular vesicles and receptors at the 
plasma membrane of the recipient cells, as in follicular 
dendritic cells135, intestinal epithelial cells136, dendritic 
cells137, or neurons138 and also in liver, lungs or lymph 
nodes136,139. Of note, the recipient cell can also be the 
producing cell itself, generating autocrine responses124.

Several mediators of these interactions are known, 
including tetraspanins, integrins, lipids, lectins, heparan 
sulfate proteoglycans and extracellular matrix (ECM) 
components (FIG. 5 inset). The cellular and molecular 
basis for the specific targeting to acceptor cells is still 
unclear, although some data are available. For example, 

integrins on extracellular vesicles can interact with adhe­
sion molecules such as intercellular adhesion molecules 
(ICAMs)140 at the surface of recipient cells. In addition, 
the interaction of integrins with extracellular matrix pro­
teins, mostly fibronectin and laminin, has been shown to 
have important roles in exosome141,142 and microvesicle143 
binding to recipient cells. In this context, the ECM can 
act as a ‘zipper’ between integrins present on extracellu­
lar vesicles and target cells. In vivo, integrin heterodimers 
may drive extracellular vesicles towards specific target 
organs139. One example includes exosomes released by 
cancer cells, which can be targeted to specific organs 
such as lung and liver to promote premetastatic niche 
formation in a manner dependent on their integrin com­
position139. Exosomal tetraspanins could also regulate 
cell targeting. They have been shown to interact with 
integrins144 and to promote exosome docking and uptake 
by selected recipient cells145,146. Other molecules such as 
heparan sulfate proteoglycans and lectins, both present 
in extracellular vesicles and at the plasma membrane, 
contribute to the docking and/or attachment of these 
vesicles to recipient cells (FIG. 5). Glypican 1, a cell surface 
proteoglycan that bears heparan sulfate, and CD44, a cell 
surface glycoprotein involved in cell–cell interactions, 
are involved in exosome147 and microvesicle148 docking, 
respectively. The lipid composition of extracellular vesi­
cles can also have an impact on recipient­cell targeting. 

Figure 5 | Fate of extracellular vesicles in recipient cells. In the recipient 
cell (which can be the producing cell itself), exogenous extracellular vesicles 
will bind to the cell surface (see inset) and can undergo various fates. 
Depending on the cell type, they can remain bound to the surface (for 
example, to integrins) and can initiate intracellular signalling pathways 
(for example, antigen presentation). Extracellular vesicles may also be 
internalized by multiple pathways. Internalization will target exogenous 
extracellular vesicles into the canonical endosomal pathway, whereby they 
reach multivesicular endosomes (MVEs), in which the internalized vesicles 
are likely to mix with endogenous intraluminal vesicles (ILVs). Fusion of 

MVEs with the lysosome will lead to the degradation of extracellular 
vesicles and the recycling of their contents to fuel the metabolism of the 
recipient cell. Extracellular vesicles docked either at the plasma membrane 
or at the limiting membrane of MVEs can release their intraluminal contents 
into the cytoplasm of the recipient cell by fusion, a process that is currently 
poorly understood but of major importance for delivery of intraluminal 
cargoes such as microRNA (miRNA). Of note, there is no evidence so far to 
exclude potential recycling to the plasma membrane of endocytosed 
vesicles (dashed arrows). ECM, extracellular matrix; ICAM, intercellular 
adhesion molecule; TIM4, T cell immunoglobulin mucin receptor 4.
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Macropinocytosis
A form of regulated 
endocytosis that involves 
the nonspecific uptake of 
extracellular material (such as 
small soluble molecules, 
nutrients or antigens) by 
invagination of the plasma 
membrane, which is then 
pinched, resulting in small 
vesicles in the cytoplasm.

Trophoblast
Cells that form the outer layer 
of a blastocyst, provide 
nutrients to the embryo 
and give rise to a large part 
of the placenta.

Microglia
Brain glial cells that act as 
the first and main endogenous 
immune defence in the central 
nervous system.

Astrocytes
Star-shaped glial cells in the 
brain involved in nutrient 
supply, maintenance of 
extracellular ion balance 
and tissue repair following 
brain injuries.

Filopodia
Highly dynamic actin-rich cell 
surface protrusions used by 
cells to sense their external 
environment.

For example, phosphatidylserine can recruit specific 
lipid­binding proteins such as galectin 5 or annexin 5 
(REFS 140,149,150) that then induce docking of vesicles 
to the target cell membrane.

Uptake and intracellular fate of extracellular vesicles. 
Once they have bound to recipient cells, extracellu­
lar vesicles may remain at the plasma membrane52,135 
or may be internalized by clathrin­mediated or clathrin­ 
independent endocytosis, such as macropinocytosis and 
phagocytosis151–153 as well as through endocytosis via 
caveolae and lipid rafts154–156 (FIG. 5). Of note, certain cell 
types, such as HeLa cells or Epstein–Barr virus (EBV)­
transformed B cell lines release clusters of exosomes, as a 
result of tethering the vesicles by the protein tetherin 
(also known as bone marrow stromal antigen 2)95. This 
clustering may affect the way in which these vesicles 
are internalized, favouring phagocytosis or macropino­
cytosis to support the engulfment of such large masses 
or aggregates of extracellular vesicles151.

The specific composition of extracellular vesicles will 
influence their fate. The presence of amyloid precursor 
protein (also known as amyloid­β (A4) protein) on one 
exosome subtype from neuroblastoma cells specifically 
targets them to neurons, in contrast to a CD63­enriched 
exosome subtype that binds both neurons and glial 
cells154. Another example is the presence of syncytin 1 
at the surface of exosomes derived from the trophoblast, 
which promotes their uptake155, whereas the presence of 
a ‘don’t eat me’ signal, such as CD47, at the surface has 
been shown to have a strong inhibitory effect on vesicle 
phagocytosis by monocytes156.

The fate of extracellular vesicles is also likely to be 
related to the presence of specific structures at the plasma 
membrane of the target cell. As an illustrative exam­
ple, it has been shown that microvesicles derived from 
 microglia show largely different dynamics of interaction 
with membranes of microglia and astrocytes157. It has 
also been shown that filopodia drive extracellular vesicles 
towards sites of uptake158. The lipid composition of the 
plasma membrane of recipient cells, such as the pres­
ence of lipid rafts, also contributes to extracellular vesicle 
internalization, as disruption of lipid rafts by cholesterol 
depletion reduces uptake of extracellular vesicles159.

Following interaction with the plasma membrane 
of recipient cells157 and after uptake by different mech­
anisms, extracellular vesicles follow the endocytic 
pathway and reach MVEs, which, in most cases, are 
targeted to the lysosome160,161. In some cases, the inter­
nalized vesicles may escape digestion by back fusion 
with the limiting membrane of the MVE, thereby 
releasing their contents into the cytoplasm of the recipi­
ent cell162, a process that is still poorly understood but 
of prime importance to release intraluminal nucleic 
acid structures (FIG. 5). The restricted colocalization of 
trophoblast­derived exosomes with early but not late 
endosomal structures also suggests that some internal­
ized extracellular vesicles can escape lysosomal degrad­
ation by being re­ secreted either via the early endocytic 
recycling pathway or by fusion of MVEs with the plasma 
membrane158 (FIG. 5).

Advances in live­imaging methods and super­ 
resolution techniques will surely aid in the understand­
ing of the processes of extracellular vesicle uptake and 
their intracellular fates.

Signals delivered by extracellular vesicles to recipient 
cells. Once docked at the plasma membrane, extra­
cellular vesicles can elicit functional responses by bind­
ing to and activating receptors expressed on the recipient 
cells (FIG. 5). The first examples were exosomes derived 
from B cells and dendritic cells that were able to pres­
ent antigens to T cells and induce a specific antigenic 
response15,16. Tumour­derived microvesicles were shown 
to carry fibronectin, which, when bound to integrin on 
non­transformed fibroblasts, was able to promote their 
anchorage­independent growth (one of the hallmarks 
of tumorigenesis), contributing to the acquisition of a 
transformed phenotype by healthy cells163. As another 
example, microvesicles generated and released by 
embryonic stem cells were shown to induce invasion of 
maternal tissue by the trophoblast, which is mediated 
by the interaction of laminin and fibronectin on the 
microvesicles with integrins along the surfaces of 
the trophoblast and which promotes embryo implanta­
tion164. A role for extracellular vesicles in the long­range 
transfer of morphogens to recipient cells in developing 
organisms was also shown165.

Cargo delivered by extracellular vesicles can also 
activate various responses and processes in the recipient 
cell after internalization. For example, in dendritic cells, 
protein cargoes of exosomes derived from intestinal 
epithelial cells136 or other dendritic cells140 are processed 
in the endocytic compartment similarly to antigens and 
then used in antigen presentation, thereby contributing 
to immune response regulation. Extracellular vesicles 
could also fuse directly with the plasma membrane or 
endocytic membrane of recipient cells. Such processes 
are required to release intraluminal content in the cyto­
plasm of recipient cells, a key step to support the release 
of miRNA62 and mRNA166 from extracellular vesicles 
into recipient cells to regulate gene expression. Direct 
fusion of extracellular vesicles with the membrane 
of recipient cells also enables the exchange of trans­
membrane proteins and lipids. Extracellular vesicles 
can transport various lipid species including eicosanoids, 
fatty acids and cholesterol as well as lipid translocases, 
thereby contributing to the regulation of bioactive lipid 
species167. Under pathological situations, a good example 
of material transferred through extracellular vesicles is 
the pathological amyloid proteins, which can be either 
enriched at the surface of extracellular vesicles, such as 
PrP or amyloid­β peptide, or present intraluminally, 
such as TAR DNA­binding protein 43 (TDP43) and 
α­synuclein. Their transfer to recipient cells, requiring 
back fusion, has been proposed to favour transcellular 
spreading of amyloids168. Mechanisms governing fusion 
of extracellular vesicles with these different compart­
ments are not yet known but could be analogous to 
fusogenic processes employed by viruses169.

The ultimate and probably the most frequent fate 
of extracellular vesicles is their targeting to lysosomes, 
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which leads to the degradation of proteins and lipids 
carried by extracellular vesicles. Of importance, this 
degradative pathway would provide a relevant source of 
metabolites to the recipient cells170 (FIG. 5).

Conclusions and perspectives
Much progress has been made in recent years in under­
standing the basic biology of extracellular vesicles, but 
further investigations are required to fully resolve the 
functional capabilities of these vesicles. Extracellular 
vesicles are involved in several physiological contexts 
and pathological states, including blood coagulation, 
inflammation, stem cell expansion, neuronal communi­
cation and tumorigenesis, among others6. In this con­
text, extracellular vesicles have been shown to carry, for 
example, tumour­associated molecules in case of cancer 
and premetastatic niche establishment139,171, or particu­
lar components associated with neurodegenerative dis­
eases172. Thus, extracellular vesicles hold great potential 
for clinical application.

Regulatory pathways involved in biogenesis and 
secretion of extracellular vesicles, when well defined, 
could be used to manipulate extracellular vesicle gener­
ation in pathological states, such as tumorigenesis, 
where the involvement of extracellular vesicles in 
pathology has been particularly well documented163. 
Nevertheless, it should be noted that manipulation 
of machineries involved in the biogenesis, transport 
or targeting of extracellular vesicles for therapeutic 
benefit should be approached with caution, owing to 
potential secondary effects of such manipulations on 
healthy tissues173.

The broad and increasing interest in extra cellular 
vesi cles has also opened up the possibility to use 
exosomes and microvesicles as biomarkers to follow the 
progression of various pathological states, for example, 
for assessing risk of tumour progression and metastasis 
or for providing early biomarkers of neurodegener ative 
diseases172. Investigations in this area have flourished, 
aiming to establish the groundwork for the use of 
extracellular vesicles as biomarkers in a variety of dis­
eases. Developing techniques to enrich for disease­ 
associated (for example, tumour­derived) extra cellular 
vesicles to define their selective cargo can improve the 
sensitiv ity of such biomarkers174. Whether these ‘mem­
brane biomarkers’ correspond to endosomal­derived 
exosomes or membrane­derived microvesicles is so 
far unclear although potentially informative. Future 
studies and optimized isolation procedures (BOX 1) will 
shed light on the nature of the different extracellular 
 vesicle sub populations that could be associated with 
distinct  pathological states and stages of progression of 
a given disease.

Another emerging application is the use of micro­
vesicles and exosomes as vectors for the delivery of 
defined compounds or more generally for modulation 
of cell functions in an in vivo context. Extracellular  vesicles 
are biocompatible, can be immunologically inert and can, 
if necessary, be patient­derived and therefore less likely to 
trigger innate and adaptive immune responses175. Their 
use in clinical research has already demonstrated that 
extracellular vesicles secreted by immune cells (dendritic 
cells) stimulate the immune system and can therefore be 
exploited as antitumour vaccines176,177. Several clinical 

Box 1 | Methods of isolation and analysis of extracellular vesicles

The release of extracellular vesicles in the extracellular space allows for 
their recovery from cell culture supernatants and liquid biopsy samples. 
Isolation procedures include differential ultracentrifugation, flotation 
on density gradients, separation by size exclusion chromatography, 
poly(ethylene glycol) (PEG) precipitation, immunoprecipitation and 
commercial kits that are partly based on these methods. These steps allow 
separate extracellular vesicles to be concentrated and separated from 
protein aggregates, lipoparticles, viruses and cell debris with different 
rates of success. Combining multiple isolation procedures is encouraged 
to clearly separate subpopulations of vesicles based on their size, density 
or composition.

Several analytical methods are available and should be combined to 
first assess the purity, integrity and concentration of extracellular vesicles 
before further analysis or other experiments are performed. The most 
commonly used approaches for the analysis of the composition and 
morphology of extracellular vesicle populations include western blot 
analysis, nanoparticle tracking, transmission electron microscopy and 
flow cytometry and can be completed by proteomics, lipidomics 
and RNA and/or DNA sequencing67,186. Functional analysis of extracellular 
vesicles depends on the question to be addressed. It should always be 
performed after assessment of the purity of the extracellular vesicle 
pellet as soluble proteins such as cytokines, protein complexes and 
aggregates or lipoparticles are a major source of false-positive results 
in functional assays.

A crowdsourcing knowledgebase (see Further information) that 
centralizes extracellular vesicle studies and methodologies provides 
a means to standardize extracellular vesicle research to strengthen 

reproducibility between studies187. Emerging strategies are now being 
developed to investigate the biogenesis and uptake of extracellular 
vesicles and the transfer of material to recipient cells in vitro and in vivo. 
These strategies are mainly based on the labelling of isolated extracellular 
vesicles with fluorescent dyes or expression of fluorescent reporters that 
are targeted to these vesicles. Such labelling has some limitations188 but 
allows the tracking of extracellular vesicles by live-cell imaging in cell lines 
and, to a limited extent, in vivo189. The main limitation being the size of the 
vesicles, super-resolution microscopy is one option to assess vesicle 
budding at the plasma membrane or in multivesicular endosomes and 
to track their fate in recipient cells. A second approach is based on the 
loading of extracellular vesicles with molecules (mRNA, microRNA, 
Cre recombinase)190,191 that induce detectable signals such as modulation 
of expression of a reporter gene once released in recipient cells. 
An alternative approach using optical tweezers allows the manipulation 
and visualization of single vesicles at the surface of recipient cells154. 
However, so far, the field still needs in vivo models that allow 
reproducible tracking of extracellular vesicles at a single-vesicle and high 
spatiotemporal resolution at different stages: through their biogenesis and 
transit routes in secreting cells to their delivery and fate in recipient cells. 
Such an approach would overcome the actual limitations linked to, 
for example, the biased recovery of extracellular vesicles from the 
supernatant (resulting from processes such as vesicle tethering to the 
membrane of the producing cell or their re-uptake)95,124. Still, as in any 
novel field of research, pre-analytical and analytical methods for studying 
extracellular vesicles are bound to evolve and to be better standardized to 
render the increasing numbers of publications in this field comparable.
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trials involving the use of extracellular  vesicle­based 
delivery are ongoing, for example, in the treatment of 
lung cancer and mela noma, which may become part 
of an immunotherapy approach that has great potential 
for patients with advanced  cancers178. Given that extra­
cellular vesicles (in particular, exosomes) can be either 
immunostimulatory or tolerogenic (immuno logically 
inert), there are several examples of possible therapeu­
tic interventions where extracellular vesicles can be 
used (reviewed in detail elsewhere5,179,172). Aside from 
the aforementioned use of extracellular  vesicles in anti­
tumoural therapy, dendritic cells pulsed with Toxoplasma 
gondii release extracellular vesicles that confer protection 
against subsequent toxoplasma infection180. Such a strat­
egy could be considered for fungi, bacteria, parasitic 
protozoa and helminths172. Extracellular vesicles derived 
from mesenchymal stem cells have been tested in  animal 
models for treating acute kidney failure181, myocardial 
infarction182 or ischaemia183. Other ongoing assays are 

based on in vitro manipulation of extracellular vesicles 
with the loading of a particular cargo (for example, 
interfering RNAs, suicide mRNAs/ proteins, mi    RNAs and 
drugs) to then deliver it to the target cell as a drug or for 
bioengineering purposes184,185. Modulating the specifi­
city of targeting extracellular vesicles to recipient cells 
will be key for their use as high­ precision vehicles, and 
such approaches have already been tested to optimize the 
delivery of siRNAs to the brain184.

Despite the enormous therapeutic potential, the field 
is still in demand of new in vivo models combined with 
powerful imaging methods to track, at the single­vesicle 
scale, the release, trafficking routes and fates of extra­
cellular vesicles within the complex architecture of the 
organism (see also BOX 1). Cell biologists and physicians 
working side by side in a complementary manner will 
certainly shed further light on the basic functions of 
extracellular vesicles and on their translation from the 
bench to the bedside.
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